云譯翻譯公司
模塊化無(wú)人空中系統的系統和方法SYSTEM AND METHOD FOR MODULAR UNMANNED AERIAL SYSTEM 模塊化無(wú)人空中系統的系統和方法 ABSTRACT A modular Unmanned Aerial System (UAS) has first and second flight configurations, and includes an Unmanned Aerial Vehicle (UAV) parent module and a plurality of UAV child modules. The parent module may have a fuselage, forward and aft wings connected to the fuselage, and a first plurality of flight propulsion devices. The child modules have a corresponding second plurality of flight propulsion devices. Each child module docks wingtip-to-wingtip with the parent module or an adjacent edge of a child module using the docking mechanisms. The child modules undock and separate from the forward wing and each other, and achieve controlled flight independently of the parent module while in the second flight configuration. A method for controlling the modular UAS is also disclosed. 20 Claims, 4 Drawing Sheets 摘要 一種模塊化無(wú)人空中系統(UAS)具有第一和第二構型,包括一個(gè)無(wú)人機(UAV)母模塊和多個(gè)無(wú)人機子模塊。該母模塊可具有機身、連接到機身上的前后機翼,以及多個(gè)第一飛行推進(jìn)裝置。每個(gè)子模塊利用對接機構,以翼尖對翼尖形式與母模塊或子模塊的相鄰端對接。采用第二飛行構型時(shí),該子模塊可與前翼及其相互之間分離,從而實(shí)現獨立于母模塊的受控飛行。還公開(kāi)了模塊化無(wú)人空中系統的控制方法。 20項權利要求,4張附圖
SYSTEM AND METHOD FOR MODULAR UNMANNED AERIAL SYSTEM 模塊化無(wú)人空中系統的系統和方法 CROSS-REFERENCE TO RELATED PATENT APPLICATION(S) 相關(guān)專(zhuān)利申請交叉引用 This patent application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/344,728, filed on Jun. 2, 2016, the contents of which are hereby incorporated by reference in their entirety. 本專(zhuān)利申請要求2016年6月2日提交的美國臨時(shí)專(zhuān)利申請No. 62 / 344,728的權益和優(yōu)先權,其全部?jì)热萃ㄟ^(guò)引用結合到本文中。 STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT 關(guān)于聯(lián)邦政府贊助研究或開(kāi)發(fā)的聲明 The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor. 本文描述的發(fā)明是由美國政府雇員完成的,可以由美國政府根據其目的進(jìn)行制造和使用而不必為此支付專(zhuān)利費。 BACKGROUND OF THE INVENTION 本發(fā)明的背景 Unmanned Aerial Vehicle (UAV)-based parcel delivery services for commercial, private, and government applications have received heightened attention in recent years due largely to advancements in key supporting technologies. Corporate entities in particular continue to aggressively develop UAV-based parcel delivery systems under the pretense that market demand for UAV delivery services will entail point-to-point/short-range and low-weight payload delivery. In addition to parcel delivery, example UAV-based aerial applications include scientific data collection, search and-rescue operations, surveillance and reconnaissance missions, and other applications requiring extended flight ranges and dwell times. As a result, such missions tend to rely on single fixed-wing UAV configurations having a specified onboard sensor suite. Other proposed configurations use a battery-powered multi -rotor design. While relatively lightweight, conventional rotary configurations exist, such configurations may result in inefficient flight operations, reduced flying ranges, and lower payload-carrying capabilities. Therefore, a need exists for long-range UAV-based aerial delivery systems and methodologies to collectively provide a distributed aerial presence. 近幾年針對商業(yè)、私人和政府應用的基于無(wú)人機的包裹配送服務(wù)越來(lái)越得到高度關(guān)注,這在很大程度上是由于關(guān)鍵支持技術(shù)取得了進(jìn)步。特別是在市場(chǎng)對點(diǎn)對點(diǎn)/短程以及低重量有效載荷無(wú)人機配送服務(wù)需求增加的預期下,法人實(shí)體將繼續大力開(kāi)發(fā)基于無(wú)人機的包裹配送系統。除了包裹配送,基于無(wú)人機的空中應用的示例還包括科學(xué)數據采集、搜救行動(dòng)、監視與偵察任務(wù),以及要求長(cháng)航程和留空時(shí)間的其它應用。因此,這類(lèi)任務(wù)通常依靠配有特定機載傳感器套件的單一固定翼無(wú)人機。其它提議的構型采用電池驅動(dòng)多轉子設計。盡管重量相對較輕,傳統旋翼構型可能因飛行效率低而導致航程短和有效載荷攜帶能力低。因此,需要一種基于長(cháng)航程無(wú)人機的空中配送系統和方法,共同提供一種分布式空中存在。 BRIEF SUMMARY OF THE INVENTION 本發(fā)明概述 An Unmanned Aerial System or UAS is configured to provide the distributed aerial presence noted above using a modular "parent -child" vehicle architecture as set forth herein. The UAS of the present disclosure may be used to deliver parcels or other payloads over an expanded flight range. The present approach involves the coordinated and synergistic use of multiple Unmanned Aerial Vehicle (UAV) "child" modules that dock or link edge -to-edge or wingtipto-wingtip during shared transport via a separate UAV "parent" module. As a result, the potential flight range is extended by increasing aerodynamic efficiency of the UAS, and by possibly sharing electrical energy between the linked parent and child modules. 一種無(wú)人空中系統或UAS,利用本文描述的模塊化“母-子”飛行器架構,其構型可提供上述分布式空中存在。本公開(kāi)內容的無(wú)人空中系統可能用于遠距離配送包裹或其它有效載荷。本方法涉及多個(gè)無(wú)人機“子模塊”的協(xié)調和協(xié)同使用,這些子模塊在與一個(gè)獨立的無(wú)人機“母模塊”共享運輸期間,可以端對端或翼尖對翼尖方式與其對接或連接。因為提高了無(wú)人空中系統的氣動(dòng)效率,以及母模塊與子模塊之間可能共享電能,該系統的航程可能增加。 In general, the modular UAS includes two independently operable unmanned aircraft: the UAV parent module and multiple, identically-configured UAV child modules. The parent and child modules may operate together or independently depending on the stage of flight operations and the particular mission requirements. When the child modules are docked with the parent module, the resultant UAS resembles a fixed-wing aircraft having an extended main wing constructed from the interconnected wings of the parent and child modules. The UAS may include one or more horizontal and/or vertical stabilizers, some of which may serve a dual purpose by functioning as landing gear structure. The parent module is equipped to provide primary forward thrust for the UAS. Upon reaching a rendezvous point, the child modules undock and detach from each other and from the parent module, transition to independent flight, conduct a designated module -specific mission, and then, if needed, return to the parent module for re -docking. Depending on the mission, multiple child modules may remain linked with one another and/or may undock at different times. 總體上,模塊化無(wú)人空中系統包括兩個(gè)可獨立運行的無(wú)人機:無(wú)人機母模塊和多個(gè)獨立構型無(wú)人機子模塊。根據飛行階段和特定任務(wù)要求,母子模塊可以共同或獨立運行。當子模塊與母模塊對接時(shí),該合成無(wú)人空中系統如同一架固定翼飛機,其延長(cháng)的主翼由母子模塊相互連接的機翼構成。該無(wú)人空中系統可能包括一個(gè)或多個(gè)水平和/或垂直安定面,其中某些還可能兼作起落架結構使用。該母模塊配有為無(wú)人空中系統提供前向主推力的裝置。到達交會(huì )點(diǎn)后,子模塊與母模塊及其相互之間實(shí)現分離,轉為獨立飛行方式,完成各個(gè)模塊的指定任務(wù),然后(如果需要)返回到母模塊重新對接。根據任務(wù)需要,多個(gè)子模塊可能保持相互連接,并且/或在不同時(shí)間分離。 In a non-limiting example embodiment, the modular UAS has separate first and second flight configurations, and includes the UAV parent module and a plurality of the UAV child modules. The UAV parent module may include a fuselage, forward and aft wings, and a first plurality of flight propulsion devices. Each UAV child module has a corresponding second plurality of flight propulsion devices. In the first flight configuration, each child module uses the docking mechanisms to link or dock with either a distal end of the forward wing or an edge or wingtip of an adjacent child module. To achieve the second flight configuration, the child modules undock and separate from the forward wing and from each other and transition to controlled flight independently of flight of the UAV parent module. 在一個(gè)無(wú)限制實(shí)施例中,該模塊化無(wú)人空中系統具有獨立的第一和第二構型,包括無(wú)人機母模塊和多個(gè)無(wú)人機子模塊。該無(wú)人機母模塊可能包括機身、前后機翼和多個(gè)第一飛行推進(jìn)裝置。在第一飛行構型中,每個(gè)子模塊利用對接機構與前翼的遠端對接或連接,相鄰兩個(gè)子模塊的兩端或翼尖也同樣對接。欲形成第二飛行構型,子模塊與前翼分離,并且其相互之間也分離,從而轉換到獨立于無(wú)人機母模塊的受控飛行。 The first plurality of propulsion devices may include propellers, e.g., connected to a forward wing, with one or more additional propellers connected to an aft wing or a vertical stabilizer. The diameter of the propellers connected to the forward wing may be less than the diameter of the propellers connected to the aft wing in some configurations. The first plurality of propulsion devices may further include first and second sets of ducted rotors positioned within the respective forward and aft wings. Some or all of the propellers, such as those connected to the example forward wing, may be configured to selectively pivot into a vertical orientation such that a plane of rotation of the propellers is substantially horizontal, i.e., to provide a vertical takeoff and landing configuration. 多個(gè)第一推進(jìn)裝置可能包括螺旋槳,例如安裝到前翼上,還有一套或多套附加螺旋槳安裝到后翼或垂直安定面上。在某些構型中,安裝到前翼上螺旋槳的直徑可能小于安裝到后翼上螺旋槳的直徑。多個(gè)第一推進(jìn)裝置可能還包括安裝在相應前翼和后翼上的第一和第二架份涵道式轉子。一些或全部螺旋槳,如安裝在示例前翼上的螺旋槳,其構型允許選擇翻轉到垂直方向,這樣該螺旋槳的旋轉平面大體上處于水平面,即提供一個(gè)垂直起降構型。 In some optional embodiments, a fuel tank or other energy storage system may be positioned within the fuselage, with the first plurality of propulsion devices powered using energy from the energy storage system. For instance, combustion of a supply of fuel in the fuel tank may be used to power the propulsion devices, or electricity may be used when the energy storage system is a battery. Power may be distributed to the propulsion devices either mechanically, e.g., directly via spinning shafts, or indirectly by generating electrical energy that is distributed to the propulsion devices. 在某些可選實(shí)施方式中,油箱或其它儲能系統可以置于機身之內,為多個(gè)第一推進(jìn)裝置提供能量。例如,可用油箱中的燃油燃燒為推進(jìn)系統提供動(dòng)力,或者如果儲能系統是電池則為推進(jìn)系統通過(guò)電力。動(dòng)力既可以機械方式(例如通過(guò)轉軸)也可以電能等間接方式傳送到推進(jìn)裝置。 The second plurality of propulsion devices may include ducted rotors positioned within the child modules, e.g., four ducted rotors for a given child module. Each child module may include a corresponding battery, with the propulsion devices of the child modules powered using electrical energy from the corresponding battery. 子模塊上的多個(gè)第二推進(jìn)裝置可能包括涵道式轉子,例如指定子模塊具有4個(gè)涵道式轉子。每個(gè)子模塊包括一個(gè)相應的電池,用于驅動(dòng)該子模塊的推進(jìn)裝置。 Radio frequency (RF) transceivers may be connected to the parent and child modules. This configuration enables the parent module to remotely communicate with the child modules via the RE transceivers, and vice versa, particularly when operating in the second flight configuration. 母模塊和子模塊上可以安裝射頻收發(fā)器。該構型使母模塊能夠與子模塊實(shí)現遠距離通信,反之亦然,特別是在以第二構型運行的時(shí)候。 The docking mechanisms may optionally include a male fitting or probe and a female fitting or receptacle, each of which is configured to respectively engage a corresponding receptacle or probe of an adjacent child module. To facilitate docking, permanent magnets or electromagnets may be used as part of the docking mechanisms to help magnetically align adjacent child modules, or to align a child module with the parent module. Each docking mechanism may further include an actuator device, e.g., a linear or rotary actuator configured to selectively engage an adjacent child module or the parent module, thereby functioning as a mechanical interlock while operating in the first flight configuration. 對接機構可選擇包括一個(gè)插棒和一個(gè)插孔,二者的構型都保證相鄰子模塊的相應插棒與插孔能夠嚙合。為了方便對接,可使用永久磁鐵或電磁鐵作為對接機構的一部分,利用磁力幫助相鄰子模塊對齊,或子模塊與母模塊對齊。每個(gè)對接機構還可以包括一個(gè)作動(dòng)裝置,例如一個(gè)直線(xiàn)或旋轉作動(dòng)器,這樣構型的作動(dòng)器可選擇與相鄰子模塊嚙合或與母模塊嚙合,從而在第一飛行構型中可充當機械互鎖功能。 A method is also disclosed for controlling a modular UAS having the above -noted first and second flight configurations. The method according to an example embodiment includes docking or linking wingtips or distal ends of the UAV parent module to the UAV child modules in order to form the first flight configuration, and then flying the UAS to a rendezvous point while in the first flight configuration. The method also includes undocking the child modules in response to reaching the rendezvous point to thereby form the second flight configuration, and thereafter independently flying the parent module and the undocked child modules in the second flight configuration. 運行具有上述第一和第二構型的模塊化無(wú)人空中系統的方法也公開(kāi)了。根據一個(gè)實(shí)施例,該方法包括無(wú)人機母模塊與無(wú)人機子模塊之間的對接或連接翼尖或遠端,以便形成第一飛行構型,然后使無(wú)人空中系統以第一飛行構型飛往交會(huì )點(diǎn)。該方法還包括在到達交會(huì )點(diǎn)后與子模塊的分離,以此形成第二飛行構型,此后以第二飛行構型獨立地飛母模塊和分離的子模塊。 These and other features, advantages, and objects of the present disclosure will be further understood and readily apparent from the following detailed description of the embodiments and best modes for carrying out the disclosure by referring to the specification, claims, and appended drawings. 通過(guò)參考本說(shuō)明、權利要求書(shū)和附圖,可以從以下實(shí)施方式及實(shí)施本公開(kāi)的最佳方式的詳細描述中進(jìn)一步理解本公開(kāi)的這些和其它明顯特征、優(yōu)勢和目的。 BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS 附圖的幾個(gè)視圖的簡(jiǎn)述 FIG. 1 is a schematic perspective view illustration of a modular Unmanned Aerial System (UAS) having an Unmanned Aerial Vehicle (UAV) parent module and multiple UAV child modules, with the parent and child modules collectively providing a distributed aerial presence as described herein. 圖1是具有一個(gè)無(wú)人機母模塊和多個(gè)無(wú)人機子模塊的模塊化無(wú)人空中系統的示意性透視圖,如本文所述,其母模塊與子模塊共同提供分布式空中存在。 FIG. 2 is a schematic perspective view illustration of the example UAS of FIG.1 as it appears upon deployment of the child modules. 圖2是圖1中示例無(wú)人空中系統的示意性透視圖,其中子模塊處于投放狀態(tài)。 FIG. 3 is a schematic timeline depicting multiple possible flight stages of the UAS of FIGS. 1 and 2. 圖3是描述圖1和圖2中無(wú)人空中系統的多個(gè)可能飛行階段的示意性時(shí)間軸。 FIG. 4 is a flow chart describing an example method for operating the UAS of FIGS. 1 and 2 through the various flight stages depicted in FIG. 3. 圖4是根據圖3描述的不同飛行階段,描述圖1和圖2中無(wú)人空中系統運行示例方法的流程圖。 DETAILED DESCRIPTION OF THE INVENTION 本發(fā)明詳述 For purposes of description herein, the terms "upper," "lower," "right," "left," "rear," "front," "vertical," "horizontal," and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, various alternative orientations and step sequences are possible, except where expressly specified to the contrary. The specific devices and processes illustrated in the drawings and described in the following specification are intended as exemplary embodiments of the structure or processes as defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the representative embodiments disclosed herein are not limiting, unless the claims expressly state otherwise. 針對本文的描述,術(shù)語(yǔ)“上”、“下”、“左”、“右”、“前”、“后”、“垂直”、“水平”及其衍生方位詞都必須以圖1中本發(fā)明的方向為基準。然而,除非明確規定不允許,各種替代方向和步驟序列是可以使用的。附圖中顯示和以下說(shuō)明中描述的具體裝置和過(guò)程旨在為所附權利要求中定義的結構或過(guò)程提供實(shí)施例。因此,除非另有其它明確說(shuō)明,與本文公開(kāi)代表性實(shí)施例相關(guān)的具體尺寸和其它物理特征并非限制性的。 With reference to the drawings, wherein like reference numbers refer to the same or similar components throughout the several views, an Unmanned Aerial System (UAS) 10 is shown schematically in FIG. 1. The UAS 10 has two primary forward flight configurations: a linked/unitary flight configuration as shown in FIG. 1 and an unlinked flight configuration as depicted in FIG. 2. The UAS 10 is configured to execute a flight mission 40 as described below with reference to FIG. 3, whether automatically, autonomously, or under control of one or more remote pilots. One embodiment of the mission process includes a method 50 as shown in FIG. 4. As noted above, the UAS 10 is intended to provide a distributed aerial presence. As such, the UAS 10 may be used for long-range delivery of parcels or other payloads 60 (see FIG. 2), scientific data collection, surveillance and reconnaissance missions, or search and rescue operations. 參見(jiàn)附圖,在圖1所示的一種無(wú)人空中系統(UAS)10的所有視圖中,相同編號代表相同或相似部件。該無(wú)人空中系統10具有兩個(gè)主要前飛構型:圖1所示連接的/整體的飛行構型和圖2描述的分離飛行構型。無(wú)論以自動(dòng)、自主或由一個(gè)或多個(gè)操作員遠程操縱方式,該無(wú)人空中系統10的構型可執行下述圖3描述的飛行任務(wù)40。該任務(wù)過(guò)程的一個(gè)實(shí)施方式包括圖4所示的方法50。如上所述,該無(wú)人空中系統10旨在提供一種分布式空中存在。因此,該無(wú)人空中系統10可用于遠距離配送包裹或其它有效載荷60(參見(jiàn)圖2)、科學(xué)數據采集、監視和偵察任務(wù)或搜救行動(dòng)等。 The UAS 10 includes a first Unmanned Aerial Vehicle (UAV) in the form of a UAV "parent' module 30 and a plurality of second UAVs in the form of individual "child" modules 20. The child modules 20 selectively dock with and undock from the parent module 30 at different stages of the flight mission 40 of FIG. 3. The parent module 30 thus acts in a role as a "mothership" by transporting the linked child modules 20 while providing primary propulsion systems for the UAS 10. That is, the parent module 30 is responsible for propelling the UAS 10 in a forward direction as indicated by arrow F, as well as in a vertical direction (arrow V) in different flight modes. 該無(wú)人空中系統10包括一架無(wú)人機“母”模塊30形式的第一無(wú)人機和多個(gè)單一“子”模塊20形式的第二無(wú)人機。在圖3所示飛行任務(wù)40的不同階段,該子模塊20可選擇與母模塊30對接和分離。因此該母模塊30充當“母艦”作用,運送與之連接的子模塊20,同時(shí)為無(wú)人空中系統10提供主推進(jìn)系統。即,根據不同飛行模式,母模塊30負責向前(用箭頭F表示)、以及在垂直方向上(用箭頭V表示)推動(dòng)無(wú)人空中系統10。 The UAV parent module 30 may be optionally embodied as a tandem-wing aircraft as shown, i.e., with a forward wing 14F and an aft wing 14A. The aft wing 14A may be arranged in a generally parallel orientation with respect to a wing axis 21 of the forward wing 14F, and thus may serve as a horizontal stabilizer for the UAS 10. The aft wing 14A may include optional wingtip extensions 24 or winglets for improved flight stability. The wingtip extensions 24 may optionally function as or support a rear landing gear, e.g., when equipped with a suitable set of wheels or skids (not shown). 無(wú)人機母模塊30可選擇的實(shí)施方式為圖示的串聯(lián)機翼飛機,即具有前翼14F和后翼14A。后翼14A可以布置為與前翼14F翼軸的方向大體上平行方向,因此可以作為無(wú)人空中系統10的水平安定面。后翼14A可能包括可選翼尖延伸24或翼尖小翼以改進(jìn)飛行穩定性。可選擇將翼尖延伸24作為或支撐起落架,例如在配備了合適的機輪或滑撬(沒(méi)有圖示)時(shí)。 Further with respect to the main propulsion system of the UAS 10 of FIG. 1, the parent module 30 may include one or more rear propellers 22R, e.g., a single rear propeller 22R as shown having an axis of rotation 15 and a diameter (D1). The rear propeller 22R may be positioned on a vertical tail member 18 of the UAS 10 and configured to provide thrust at a relatively high efficiency. Efficiency gains may be realized via a high mass flow rate of air through the rear propeller 22R. 再參考圖1所示無(wú)人空中系統10的主推進(jìn)系統,母模塊30可能包括一個(gè)或多個(gè)后螺旋槳22R,例如圖示具有轉動(dòng)軸線(xiàn)15和直徑(D1)的單一后螺旋槳22R。螺旋槳22R可以安裝在無(wú)人空中系統10的垂直尾翼18上,這種構型產(chǎn)生推力的效率比較高。通過(guò)提高流經(jīng)螺旋槳22R的空氣質(zhì)量流量可以實(shí)現這種效率增加。 Additional propellers 22F may be connected to the forward wing 14F. The propellers 22F are shown in FIG. 1 as a pair of propellers 22F having respective axes of rotation 11 and 13 and, optionally, a smaller diameter (D2) relative to the diameter (D1) of the propeller 22R. The propellers 22F may be positioned at or near the wingtips or distal ends E1 and E2 of the forward wing 14F of the parent module 30 to help reduce drag, e.g., by providing a beneficial aerodynamic interaction with a corresponding wingtip vortex. Additionally, hover capability of the UAS 10 may be achieved in some embodiments by automatically pivoting or tilting the propellers 22F and/or 22R such that the axes of rotation 11, 13, and/or 15 transition to a vertical orientation, i.e., with a plane of rotation of the propellers 22F and/or 22R being substantially horizontal. Hover capability may also be achieved by selectively powering an enclosed set of ducted fans or rotors 16 within the forward wing 14F and the aft wing 14A. 其它螺旋槳22F可能安裝在前翼14F上。圖1中的螺旋槳22F是一對分別具有轉動(dòng)軸線(xiàn)11和13的螺旋槳22F,其直徑(D2)可大于或小于后螺旋槳22R的直徑(D1)。螺旋槳22F可以安裝在母模塊30前翼14F的翼尖或靠近翼尖處或其遠端E1和E2,以此降低阻力,例如,借助與相應翼尖渦流的有益相互作用降低阻力。此外,在某些實(shí)施方式中,無(wú)人空中系統10的懸空能力可以通過(guò)自動(dòng)傾旋螺旋槳22F和/或22R獲得,這樣旋轉軸線(xiàn)11、13和/或15轉到垂直方向,既螺旋槳22F和/或22R的旋轉平面大體上處于水平位置。該懸空能力還可以選擇用一架份封閉涵道式風(fēng)扇或轉子16提供動(dòng)力,該架份涵道式轉子16位于前翼14F和后翼14A之內。 An electric propulsion system may be used in some non-limiting embodiments of the UAS 10, in which case an energy storage system 25 in the form of a main battery located on or within the fuselage 12 of the parent module 30 may supply electrical energy to the propellers 22F and 22R and the ducted rotors 16. However, those of ordinary skill in the art will appreciate that hybrid electric architectures may be used. By way of example, the UAS 10 may be powered primarily or solely using chemical energy from fuel contained in a fuel tank 27 within the fuselage 12. The fuel tank 27 may act in addition to the energy storage system 25, or may be the sole energy storage system for the parent module 30 in different embodiments. Other power sources may be used in the alternative, such as fuel cells or solar arrays (not shown), in order to provide the UAS 10 with a suitable supply of energy for primary propulsion. 無(wú)人空中系統10的某些非限制性實(shí)施方式中可能使用電動(dòng)推進(jìn)系統,在這種情況下,安裝在母模塊機身上或內部的儲電系統可以為螺旋槳22F和22R及涵道式轉子16供電。然而,本領(lǐng)域的普通技術(shù)人員會(huì )認識到可以使用混合動(dòng)力架構。由實(shí)施例可見(jiàn),無(wú)人空中系統10可以主要或完全由機身12內油箱27的燃油產(chǎn)生的化學(xué)能驅動(dòng)。除了作為能量?jì)Υ嫦到y25外,在其它實(shí)施方式中油箱27可能還作為母模塊30的唯一能量?jì)Υ嫦到y。還可以選擇其它能源,如燃料電池或太陽(yáng)能電池板(沒(méi)有圖示),以便為無(wú)人空中系統10的主要推進(jìn)系統提供合適的能源。 Other possible hardware components of the UAV parent module 30 may include a radio frequency (RF) transceiver 17 connected to the fuselage 12 or other suitable structure of the parent module 30. In such an embodiment, the parent module 30 may be configured to broadcast corresponding flight control instructions 170 to RF transceivers 17C of the various UAV child modules 20 via the RF transceiver 17 as shown in FIG. 2 when the UAS 10 transitions to the second flight configuration, to receive GPS position data, and/or to receive or transmit flight control status information. In this manner, the parent module 30 is configured to remotely communicate with the UAV child modules 20 via the RF transceivers 17 and 17C particularly once the child modules 20 have transitioned to independent flight. Additionally, although omitted from the drawings for illustrative simplicity, the UAS 10 may be optionally equipped with a suitable sensor suite, such as electro-optical or infrared cameras, laser or radar devices, temperature or pressure transducers, airspeed sensors, or other sensors required for a given mission. 無(wú)人機母模塊30的其它硬部件可能包括安裝在機身12或母模塊30的其它合適結構內的射頻收發(fā)器17。在這類(lèi)實(shí)施方式中,當無(wú)人空中系統10轉換為第二飛行構型時(shí),母模塊30的構型可以借助圖2所示射頻收發(fā)器17,將相關(guān)飛行指令170發(fā)送到不同無(wú)人機子模塊20的射頻收發(fā)器17C,該射頻收發(fā)器17可接收GPS定位數據和/或接收或發(fā)送飛行控制狀態(tài)信息。在這樣的構型中,母模塊30可與無(wú)人機子模塊20借助射頻收發(fā)器17和17C進(jìn)行遠程通信,特別是在子模塊20已經(jīng)轉換到獨立飛行模式時(shí)。此外,盡管出于簡(jiǎn)潔性考慮沒(méi)有在附圖上顯示,無(wú)人空中系統10可以選擇安裝合適的傳感器套件,如光電或紅外照相機、激光或雷達設備、溫度或壓力換能器、空速傳感器或指定任務(wù)所需的其它傳感器。 With respect to the individual UAV child modules 20 of FIG. 1, when operating in the first flight configuration of FIG. 1, each child module 20 is configured to dock end-toend with a wingtip or distal end (E1 or E2) of the forward wing 14F, or with an adjacent one of the child modules 20. This docking functionality is achieved using a docking mechanism 45, a non-limiting example of which is depicted schematically in FIGS. 1 and 2. In this manner, the linked child modules 20 effectively extend the length of the forward wing 14F along axis 21 to increase the total wingspan of the UAS 10. The child modules 20 are also configured to undock and separate from the forward wing 14F and from each other in order to transition to flight during the second flight configuration shown in FIG. 2, with such flight thereafter progressing independently of flight of the parent module 30. 參見(jiàn)圖1所示單一無(wú)人機子模塊20,當以圖1所示第一飛行構型運行時(shí),每個(gè)這樣構型的子模塊20以端對端方式與前翼14F的翼尖或遠端(E1或E2)對接,或與其它相鄰子模塊20對接。這種對接功能是借助對接機構45實(shí)現的,圖1和圖2中以示意性方式描述了其一個(gè)非限制性實(shí)施例。這樣,相互連接的子模塊20就能有效地沿軸向延長(cháng)前翼14F,從而增加無(wú)人空中系統10的翼展。這樣構型的子模塊20還可以與前翼14F或其相互之間對接或分離,以便轉換成圖2所示第二飛行構型飛行,此后的飛行過(guò)程可以獨立于母模塊30的飛行。 The child modules 20 may be individually powered by a corresponding set of ducted fans or rotors 160, as shown schematically within a representative one of the child modules 20 at the far left of FIG. 1. The ducted rotors 160 may be similar in construction and operation to the ducted rotors 16 of the forward and aft wings 14F and 14A. Each child module 20 may carry a relatively small battery 250 to provide necessary electrical energy for powering the ducted rotors 160, as well as any onboard electrical or electromechanical devices needed for performing a particular task of a given one of the child modules 20. Also in the linked configuration of FIG. 1, docking may establish hardwired electrical connectivity between the child modules 20 and the parent module 30. The parent module 30 may be used in such a configuration to distribute electricity to the child modules 20 in flight, e.g., to charge the batteries 250 or perform in-flight system diagnostics of the child modules 20. Such networked connections may allow the parent module 30 and child modules 20 to share or conserve energy as needed and thereby increase their flight range. 子模塊20可以由相應的涵道式風(fēng)扇或轉子160獨立提供動(dòng)力,如圖1中最左端一個(gè)相應子模塊20所示。涵道式轉子160在結構和運行方式上可能與前后翼14F和14A上的涵道式轉子16相似。每個(gè)子模塊20可以攜帶較小的電池250為涵道式轉子160提供必要的電能,并且為該子模塊20執行特定任務(wù)所需的機載電力或機電設備提供電源。同樣在圖1所示的連接構型中,對接可能在子模塊20與母模塊30之間建立硬連接電路。在這類(lèi)構型中可以利用母模塊30為飛行中的子模塊20配電,例如,為電池250充電或對子模塊20進(jìn)行飛行中系統診斷。這種網(wǎng)絡(luò )化連接可以使母模塊30與子模塊20按需共享或節省能量,因此增加其航程。 Referring to FIG. 2, the UAS 10 of FIG. 1 is shown in its second forward flight mode in which the UAV child modules 20 are fully undocked from the UAV parent module 30 and operating in close proximity thereto, e.g., autonomously or via remote control by a human or automated pilot. While four child modules 20 are depicted for illustrative simplicity, more or fewer of the child modules 20 may be used in other embodiments. Each child module 20 includes the docking mechanism 45 noted above, one per lateral side or edge, and also includes a corresponding second plurality of propulsion devices. In the example embodiment of FIG. 2, the propulsion devices of a given child module 20 may include the ducted rotors 160 noted above. Thus, the child modules 20 may rely on directional thrust from the ducted rotors 160 for independent propulsion once fully undocked from the parent module 30. 參見(jiàn)圖2,圖1 所示無(wú)人空中系統10的第二前向飛行模式如圖,其中無(wú)人機子模塊20與無(wú)人機母模塊30完全分離,并且與其貼近飛行,例如以自主或借助人員或自動(dòng)駕駛儀遠程操縱。盡管為了展示的簡(jiǎn)潔性圖中僅描述了4個(gè)子模塊20,在其它實(shí)施例中使用的子模塊20可以多于或少于4個(gè)。每個(gè)子模塊20包括上述對接機構45 、每個(gè)側面(端)一個(gè),還包括多個(gè)相應的第二推進(jìn)裝置。在圖2所示實(shí)施例中,該子模塊20的推進(jìn)裝置可能包括上述涵道式轉子160。因此,一旦與母模塊30完全分離后,子模塊20可能完全依靠獨立的涵道式轉子160直接提供推力。 The ducted rotors 160 may be contained fully within the structure of a given child module 20. As a result, the various child modules 20 may be thicker than is depicted schematically in FIG. 2 to a level that depends on the required internal packaging space of the ducted rotors 160 and payload 60. Optional bay doors (not shown) disposed over the ducted rotors 160 may also be used to improve aerodynamics. Alternatively, if the mission requires that the child modules 20 operate at or near a ground surface, the child modules 20 may be configured to glide toward the ground, descending to within a predetermined distance from ground prior to starting and operating the ducted rotors 160. To facilitate flight control and provide directional stability and yaw control, each child module 20 may be equipped with a set of vertically -extending tails 28 with control rudders. Such tails 28 may double as landing gears for the child modules 20, for instance by attaching skids or wheels (not shown). Additionally, forward flight control may be facilitated via control surfaces such as flaps or ailerons along the trailing edge of the child module 20. 涵道式轉子160可能完全容納于指定子模塊20之內。因此,不同的子模塊20的厚度可能超過(guò)圖2的示意性描述,取決于涵道式轉子160和有效載荷60所需的內部空間。還可選擇在涵道式轉子160上方設置艙門(mén),用于改善氣動(dòng)性能。或者,如果該任務(wù)需要子模塊20在地面或其附近運行,這樣構型的子模塊20可以向地面滑翔,下降到預定的距地面高度,滿(mǎn)足涵道式轉子60啟動(dòng)和運行要求。為了便于飛行控制、航向控制并提供方向安定性,每個(gè)子模塊20可設置一架份配有控制舵、垂直延伸的尾翼28。該尾翼還可兼做子模塊20的起落架,例如,通過(guò)安裝滑撬或機輪即可(沒(méi)有圖示)。此外,前向飛行控制可以沿借助子模塊20后緣設置的襟翼或副翼等操縱面來(lái)實(shí)現。 Each UAV child module 20 in the non-limiting illustrative example embodiment of FIG. 2 may be configured as a hybrid wing body configuration. That is, each child module 20 may have an airfoil cross section as shown as opposed to a conventional tube and wing-type configuration. Additionally, the child modules 20 may be characterized by an absence of a taper along the wing axis 21, and thus along the wing length of the UAS 10 and the constituent parent module 30 and child modules 20 in the linked/forward flight configuration of FIG. 1. 圖2所示每個(gè)無(wú)人機子模塊20的非限制性實(shí)施例可能采用翼身融合構型。即,每個(gè)子模塊20可能具有與傳統的管或翼類(lèi)構型不同的翼型。此外,該子模塊20可以是沿翼軸線(xiàn)方向沒(méi)有錐度的形式,因此在圖1所示連接的/前向飛行構型中,沿無(wú)人空中系統10及其母模塊30和子模塊20構成的機翼長(cháng)度方向也沒(méi)有錐度。 As shown schematically in FIG. 2, the payload 60 may be carried and contained within the body of the child module 20 to ensure that the payload 60 remains substantially out of the slipstream during flight. This protects the payload 60 from the elements while improving aerodynamic efficiency. The payload 60 may be variously embodied as a parcel for delivery, a sensor suite for performing scientific research, search and rescue operations, or surveillance and reconnaissance missions as noted above. Upon reaching a target destination, the child module 20 may activate or deliver the payload 60 depending on the application, and then return under its own power to the UAV parent module 30. 如圖2所示,有效載荷60可以在子模塊20的機體內部攜帶,以確保在飛行期間有效載荷60大體上處于滑流之外。這樣就可以防止有效載荷60受天氣因素影響同時(shí)提高氣動(dòng)效率。有效載荷60可以有各種不同實(shí)施例,如上述配送的包裹,從事科研、搜救行動(dòng)或監視與偵察任務(wù)的傳感器套件等。到達目標區后,該子模塊20可以根據應用情況,激活或投放有效載荷60,然后依靠其自身動(dòng)力返回到無(wú)人機母模塊30。 Further with respect to the docking mechanism 45 introduced above with reference to FIG. 1, a probe 47 may be used in the form of a peg, extension, or other male fitting that is received within a mating receptacle 49, with each probe 47 configured to engage a corresponding receptacle 49 of an adjacent child module 20 or the distal ends E1 or E2 of the forward wing 14F, whichever is required based on relative position. As is well known in the art of airborne refueling, a universal drogue and probe -type fitting connection may be used to accommodate relative motion of two bodies in flight, here the UAV parent module 30 and a given UAV child module 20, or adjacent child modules 20. Functionally or structurally similar fitting structure may be adapted for use as the docking mechanism 45. The probe 47 and receptacle 49 may swap relative position on opposite edges of the child modules 20, such that a given probe 47 is positioned to align with a corresponding receptacle 49 of an adjacent child module 20 and vice versa. 再參考上述圖1中描述的對接機構45,插棒47可以短棒、伸出桿或其它公接頭形式與插孔49嚙合,這樣構型的插棒47與相鄰子模塊20或前翼14F遠端E1或E2(具體是哪端根據相對位置確定)的對應插孔嚙合。與眾所周知的空中加油技術(shù)一樣,可以使用錐管和插棒式對接方式以補償飛行中的兩個(gè)物體的相對運動(dòng),這里兩個(gè)物體就是無(wú)人機母模塊30與指定的無(wú)人機子模塊20,或相鄰子模塊20。也可以采用功能或結構相似的對接結構作為對接機構45。在子模塊20的相對端插棒47和插孔49應互換,這樣指定的插棒47的位置可與相鄰子模塊20的相應插孔對齊,反之亦然。 The docking mechanism 45 may optionally include a set of magnets 51 configured to magnetically align adjacent UAV child modules 20, or an inboard-most child module 20 and the parent module 30, e.g., via mutual magnetic attraction with a corresponding field of an oppositely -polarized set of magnets 51. An electromagnet may be used and selectively controlled to alternatively generate and discontinue an electromagnetic field attraction for such a purpose. Alternatively, permanent magnets may be used in conjunction with an actuator device 55 to apply a separation force and thereby urge adjacent modules 20 away from each other. A solenoid, motor, shape memory element, rotary ball screw mechanism, or other suitable actuator may be used as the actuator device 55 in different embodiments. 對接機構45可選擇包括一套磁體51,這樣構型可借助磁力將相鄰無(wú)人機子模塊20對齊,或將最內側的子模塊20與母模塊30對齊,例如,借助一套磁體51相反磁極的相互引力對齊。還可使用電磁體并加以選擇性控制,從而產(chǎn)生和消除電磁場(chǎng)引力以實(shí)現對齊。此外,還可使用永久磁鐵結合作動(dòng)裝置55施加一個(gè)分離力,以此促使相鄰子模塊20相互分離。在不同實(shí)施方式中,還可使用螺旋管、電機、形狀記憶合金、滾珠絲桿機構或其它合適的作動(dòng)器替代作動(dòng)裝置55。 An illustration of an example flight operation sequence is shown in FIG. 3 in the form of the schematic timeline 40. The method 50 for controlling progression through multiple different operating stages of the timeline 40 is described with reference to FIG. 4. While FIG. 3 depicts the UAS 10 of FIGS. 1 and 2, variations of the UAS 10 and its constituent parent module 30 and child modules 20 may be used within the scope of the method 50. Also, the timeline 40 envisions an example takeoff sequence of the UAS 10 as a unit, i.e., with the UAV child modules 20 together forming the first forward flight configuration of FIG. 1. In other approaches, it may be advantageous for the UAV parent module 30 and the individual child modules 20, or linked combinations thereof, to take off separately and dock in flight, for instance when an available runway width or pad area is less than an area that is required by the UAS 10. 圖3為一個(gè)示例飛行運行序列以示意性時(shí)間軸40形式的圖解。參考圖4描述了整個(gè)時(shí)間軸40所示多個(gè)不同運行階段控制過(guò)程的方法50。盡管圖3描述了圖1和圖2所示無(wú)人空中系統10,無(wú)人空中系統10及其構成母模塊30和子模塊20的各種改型也可在方法50的范圍內使用。另外,時(shí)間軸40是假設無(wú)人空中系統10作為一個(gè)整體的示例起飛序列,即與子模塊20一起構成圖1所示第一前飛構型。在其它使用情況下,例如可用跑道寬度或鋪設面積小于無(wú)人空中系統10要求的面積時(shí),無(wú)人機母模塊30及單個(gè)子模塊20、以及這些子模塊的組合單獨起飛然后在飛行中對接可能更具優(yōu)勢。 Commencing at to in FIG. 3, a possible flight operation of the UAS 10 commences at step S52 by initiating conventional runway takeoff or a vertical takeoff, as indicated by arrows V1 , depending on the configuration of the UAS 10. Step S52 may entail control of the primary propulsion systems of the parent module 30, such as the propellers 22F and 22R of FIG. 1, and possibly the ducted rotors 16 on the forward wing 14F and aft wing 14A. Step S52 may optionally include powering some or all of the corresponding propulsion systems of the child modules 20 during takeoff, e.g., by powering the ducted rotors 160, or the method 50 may include leaving the child modules 20 in a dormant or off state until later in the flight sequence. The method 50 proceeds to step S54 after a successful takeoff. 從圖3開(kāi)始,無(wú)人空中系統10的一個(gè)可能飛行運行從步驟S52開(kāi)始,根據無(wú)人空中系統10的構型可啟動(dòng)傳統的跑道起飛,或如箭頭V所示的垂直起飛。步驟S52可能涉及母模塊30的主推進(jìn)系統控制,如圖1所示前翼14F和后翼14A上的螺旋槳22F和22R及可能的涵道式轉子16。在起飛過(guò)程中步驟S52還可選擇驅動(dòng)子模塊20的某些或全部相應推進(jìn)系統,例如驅動(dòng)涵道式轉子160,或方法50可令子模塊20處于不啟動(dòng)或關(guān)機狀態(tài),直到后續飛行階段。完成前飛后方法50進(jìn)入步驟54。 Step S54 may include determining whether a vertical takeoff is being requested or is already being performed. If so, the method 50 proceeds to step S56. The method 50 proceeds in the alternative to step S55 when a vertical takeoff is not being requested or performed. 步驟54可能包括確定是否要求垂直起飛或是否已經(jīng)執行。如果已經(jīng)起飛,則方法50進(jìn)入步驟S56。如果不要求垂直起飛或沒(méi)有執行,方法50則轉入替代步驟S55。 At step S55, the UAS 10 travels toward a predetermined rendezvous point. For instance, as a set of flight instructions broadcast or transmitted to the UAS 10 and received via the onboard RF transceiver 17, the UAS 10 may be provided with coordinates of a rendezvous point and heading by a ground-based control center (not shown), or the UAS 10 may be programmed with such information prior to takeoff. The method continues to step S58. 在步驟S55中,無(wú)人空中系統10飛往一個(gè)預定的交會(huì )點(diǎn)。例如,無(wú)人空中系統10可能借助機載射頻收發(fā)器17接收向其廣播或發(fā)送的一系列指令,無(wú)人空中系統10可以通過(guò)地基控制中心(沒(méi)有圖示)獲得交會(huì )點(diǎn)坐標和航向,也可在起飛前通過(guò)編程存儲這些信息。然后該方法進(jìn)入步驟S58。 Step S56 includes transitioning the UAS 10 to forward flight at a predetermined altitude and/or travel time. Such a transition occurs at time t, in FIG. 3. The method 50 thereafter proceeds to step S58. 步驟S56包括在預定高度和/或航行時(shí)間將無(wú)人空中系統10轉換為前飛。這個(gè)轉換發(fā)生在圖3中的時(shí)刻t1。 Step S58 includes determining whether the UAS 10 has reached a predetermined rendezvous point, e.g., by comparing the coordinates of the rendezvous point with the present position of the UAS 10 corresponding to, e.g., a known GPS position of the UAS 10. Steps S55 and S58 are repeated until the UAS 10 reaches the rendezvous point, or within an allowable range thereof, which occurs around t z of FIG. 3. The method 50 then continues to step S60. 步驟S58包括確定無(wú)人空中系統10是否已達到預定交會(huì )點(diǎn),例如,通過(guò)將該交會(huì )點(diǎn)坐標與無(wú)人空中系統10當前位置對應的坐標(例如,無(wú)人空中系統10的已知GPS定位信息)進(jìn)行比對。重復步驟S55和步驟S58,直到無(wú)人空中系統10達到交會(huì )點(diǎn)或其允許的誤差范圍內,這個(gè)時(shí)刻為圖3中的t2。然后方法50進(jìn)入步驟S60。 At step S60, commencing at about t z the method 50 includes transitioning the UAS 10 to a hover or loiter mode in preparation for undocking and distributed aerial operations. Step S60 may include controlling the speed, yaw, or other characteristic of the ducted rotors 16 and propellers 22R and 22F to enter the hover or loiter modes, with the particular mode depending on the mission and configuration of the UAS 10. The method 50 proceeds to step S62. 在從t2開(kāi)始的步驟S60中,方法50包括將無(wú)人空中系統10轉為懸停或留空模式,為分離和分布式空中運行做準備。步驟S60可能包括控制速度、偏航或涵道式轉子16及螺旋槳22R和22F的其它特性以進(jìn)入懸停或留空模式,還可根據無(wú)人空中系統10的任務(wù)和構型進(jìn)入特殊模式。然后方法50進(jìn)入步驟S62。 Step S62 may include undocking the UAV modules 20 from the parent module 30, an event that occurs shortly after t2 in FIG. 3. As part of step S62, the parent module 30 may signal the individual UAV modules 20 to separate and commence independent flight operations. Implementation of step S62 may vary depending on the configuration of the docking mechanism 45 of FIG. 1. For example, separation may include activation of the actuator device 55 shown schematically in FIG. 2 so as to urge a given UAV child module 20 away from an adjacent child module 20. The method 50 thereafter proceeds to step S64. 步驟S62包括母模塊30與無(wú)人機子模塊20分離,這是在圖3中t2時(shí)刻后不久發(fā)生的事件。作為步驟S62的一部分,母模塊30可能向單一無(wú)人機模塊20發(fā)信號進(jìn)行分離,然后開(kāi)始獨立飛行。步驟S62的實(shí)施可能因圖1所示對接機構45的構型改變。例如,分離可能包括激活圖2所示作動(dòng)裝置55,從而促使指定無(wú)人機子模塊20與相鄰子模塊20分離。然后方法50進(jìn)入步驟S64。 At step S64, the method 50 continues by deploying a plurality (n) of the child modules 20 to corresponding target destinations commencing at about t 3 of FIG. 3. That is, the (n) child modules 20 fly under their own power to designated destinations to complete an assigned task, such as delivering the payload 60 of FIG. 2 in the form of a package to a particular address or destination, collecting scientific data, or performing a search -and-rescue operation. The parent module 30 may hover or loiter on station while monitoring operations of the deployed child modules 20, or the parent module 30 may conduct its own assigned mission tasks. The method 50 then continues to step S66. 在步驟S64中,方法50繼續實(shí)施,大致從圖3中的t3時(shí)刻開(kāi)始就多(n)個(gè)子模塊20部署到相應目標區。即(n個(gè))子模塊20依靠自身動(dòng)力飛到指定目的地以完成規定任務(wù),如將圖2中包裹形式的有效載荷60送到特定地址或目的地、采集科學(xué)數據或執行搜救行動(dòng)等。母模塊30可能懸停或留空監控子模塊20的運行,母模塊30也可執行分配給自己的任務(wù)。然后方法50進(jìn)入步驟S66。 Step S65 includes executing a control action when fewer than (n) UAV child modules 20 have returned to the rendezvous point. For instance, the parent module 30 may initiate a timer to count through an allowable amount of time, and/or transmit a maintenance status signal or recovery signal to any child modules 20 that have not returned in order to determine whether a given UAV child module 20 is expected to return to the rendezvous point. The method 50 then repeats step S66. 步驟S65包括在少于n個(gè)子模塊20返回交會(huì )點(diǎn)時(shí)進(jìn)行控制。例如,母模塊30可啟動(dòng)一個(gè)定時(shí)器對該過(guò)程的規定時(shí)間計時(shí),并且/或向任何沒(méi)有按時(shí)返回的子模塊20發(fā)送維護狀態(tài)信號或搜救信號,以便確定某個(gè)應返回無(wú)人機子模塊20是否能夠返回交會(huì )點(diǎn)。然后方法50進(jìn)入步驟S66。 Step S66, which is executed just prior to docking of the UAV child modules 20, includes determining whether the number (n) of child modules 20 deployed at step S64 and expected to return to the rendezvous point, e.g., using a previously assigned flight mission, a received maintenance status or signal, or other suitable information, have in fact returned. Assuming all (n) child modules 20 that deployed at step S64 are expected to return to trhe rendezvous point, the method 50 proceeds to step S65 when fewer than (n) child modules 20 have returned, and to step S68 when all (n) child modules 20 have returned. In other embodiments, (n) may change from its value at step S64 when, whether due to maintenance, flight schedule, weather, or other circumstances, fewer than all of the deployed child modules 20 are expected to return to the rendezvous point. 步驟S66 ,就在無(wú)人機子模塊20對接前實(shí)施,包括確定步驟S64中部署的無(wú)人機子模塊數量(n)以及應返回的子模塊20是否已經(jīng)返回交會(huì )點(diǎn),例如,利用此前分配的飛行任務(wù)、收到的維護狀態(tài)或信號、或其它相關(guān)信息等。假設步驟S64部署的所有(n個(gè))子模塊20都應返回交會(huì )點(diǎn),如果返回的子模塊20的數量少于(n)則方法50進(jìn)入步驟S65,如果所有(n個(gè))子模塊都返回則方法50進(jìn)入步驟S68。在其它實(shí)施例中,無(wú)論因維護、飛行計劃、天氣或其它情況,應返回到交會(huì )點(diǎn)的子模塊20少于部署的全部子模塊20,則(n)與步驟S64中的值不同。 At step S68, the parent module 30 commences docking operations with any of the UAV child modules 20 flying in proximity to the parent module 30, with step S68 commencing at about t4 in FIG. 3. The method 50 proceeds to step S70 when docking operations are complete. 在步驟S68中,母模塊30開(kāi)始與任何一個(gè)靠近該母模塊30飛行的無(wú)人機子模塊20進(jìn)行對接,步驟S68從圖3中的大約t4時(shí)刻開(kāi)始。對接操作完成后方法50進(jìn)入步驟S70。 Step S70 may entail transitioning the UAS 10 to forward flight at about t5 of FIG. 3, which may entail leaving hover/vertical flight or exiting loiter flight. Thereafter, step S70 may include controlling the return flight of the UAS 10 to a desired landing destination, typically but not necessarily the original takeoff point of step S52. The method 50 then proceeds to step S72. 步驟S70可能涉及在圖3中的大約t5時(shí)刻將無(wú)人空中系統10轉換成前飛狀態(tài),這可能涉及離開(kāi)懸停/垂直飛行狀態(tài)或退出留空飛行狀態(tài)。此后,步驟S70可能包括控制無(wú)人空中系統10飛回預期的降落目的地,通常但不一定是步驟S52中的初始起飛點(diǎn)。如果方法50進(jìn)入步驟S72。 Step S72 includes commencing landing operations of the UAS 10 commencing at about t 6 , as indicated by arrows V2,and thereafter retrieving the UAS 10. Step S72 may entail controlling the airspeed and altitude of the UAS 10 as the UAS 10 approaches the predetermined landing destination, i.e., by controlling the attitude, speed, and pitch of the propellers 22F and 22R, the ducted rotors 16 and 160, and any flight control surfaces of the tail portion 18, aft wing 14A, the forward wing 14F, and linked child modules 20. 步驟S72可能包括無(wú)人空中系統10在大約t6時(shí)刻開(kāi)始的著(zhù)陸操作,用箭頭V2表示,及此后回收無(wú)人空中系統10。當無(wú)人空中系統10在預定著(zhù)陸目的地進(jìn)近時(shí),步驟S72可能涉及控制無(wú)人空中系統10的空速和高度,即控制螺旋槳22F和22R、涵道式轉子16和160的高度、速度和槳距,以及尾翼18、后翼14A、前翼14F和連接的子模塊20的任何飛行操縱面等。 Regardless of the particular embodiment, the method 50 as set forth herein enables control of the modular UAS 10 or any variant thereof having the above -described first and second flight configurations. In general terms, the method 50 includes linking the first and second distal ends E1 and E2 of the forward wing 14F to the UAV child modules 20 using the docking mechanisms 45 so as to form the first flight configuration, and then flying the UAS 10 to the rendezvous point using flight propulsion devices of the parent module 30, e.g., the propellers 22F and 22R and/or the ducted rotors 16. The child modules 20 are then detached or unlinked from the forward wing 14F and each other in response to reaching the rendezvous point, and to thereby form the second flight configuration. Thereafter, the parent module 30 is independently flown using the propellers 22F and 22R and/or ducted rotors 16 located on the parent module 30, while the UAV child modules 20 are flown using the flight propulsion devices contained in each of the child modules 20, i.e., the ducted rotors 160. 無(wú)論具體實(shí)施例如何,本文闡述的方法50使具有上述第一和第二飛行構型的模塊化無(wú)人空中系統10或其任何改型的操縱能夠實(shí)施。總體上,該方法50包括用對接機構45將前翼14F的第一和第二遠端E1和E2與無(wú)人機子模塊20連接,從而形成第一飛行構型,然后利用母模塊30的飛行推進(jìn)裝置,例如螺旋槳22F和22R和/或涵道式轉子16等,將無(wú)人空中系統10飛到交會(huì )點(diǎn)。然后子模塊20與前翼14F分離,達到交會(huì )點(diǎn)后各個(gè)子模塊之間也分離,這樣就形成了第二飛行構型。此后,母模塊30利用安裝在其上的螺旋槳22F和22R和/或涵道式轉子16等獨立飛行,而每個(gè)無(wú)人機子模塊20則利用其內部的推進(jìn)裝置(即涵道式轉子160)飛行。 Although the vehicle architectures described above include two aerial vehicles, i.e., the UAV parent module 30 and the UAV child modules 20, three or more distinct aircraft may be used in other embodiments. By designing for intra-aircraft "modularity", greater operational flexibility can be achieved. For example, one child module 20 could be sized to carry a larger payload 60 than other child modules 20. Such a configuration may be beneficially used by a package delivery service in order to deliver packages or parcels of larger sizes when needed. By "rightsizing" the payload capability of the child modules 20, energy use of the UAS 10 of FIGS. 1 and 2 can be minimized. 盡管上述飛行器架構中包括兩個(gè)空中飛行器,即無(wú)人機母模塊30和無(wú)人機子模塊20,在其它實(shí)施例中可能使用3架或更多不同的飛機。借助飛機內的“模塊化”設計可以獲得更大的運行靈活性。例如,每個(gè)子模塊20的尺寸可以大一些,以便攜帶比其它子模塊20更大的有效載荷。在包裹配送服務(wù)中這類(lèi)構型可能更有益,因其可以根據需要配送更大的包裹。通過(guò)確定子模塊20的“最佳尺寸”有效載荷攜帶能力,圖1和圖2所示無(wú)人空中系統10的耗能可以實(shí)現最小化。 Additionally, there may be advantages to using completely identical UAV modules 20 and forgoing use of a distinct parent module 30. That is, because the UAV child modules 20 and the parent module 30 are unique with respect to each other, they may require separate tooling and spare parts. Consequently, it may be possible to reduce acquisition and maintenance costs if by constructing the UAS 10 solely with identical vehicles, e.g., as a wing formed of identical UAV modules 20. Similarly, if a shorter -range mission is required, the individual child modules 20 may be able to perform the mission without the need to link with and be transported by the parent module 30. As a result, the modular approach disclosed herein provides a wide range of flexibility for achieving a distributed aerial presence. 此外,使用完全相同的無(wú)人機子模塊20并棄用不同的母模塊30可能具有優(yōu)勢。即,因為無(wú)人機子模塊20和母模塊30相互之間(對接)都是唯一的,這些模塊可能需要獨立的工藝裝備和備件(即可以獨立制造和維護,不必為保證裝配而采用協(xié)調加工—譯注)。因此,如果只用完全相同的飛行器構建無(wú)人空中系統10,例如用完全相同的無(wú)人機子模塊組成機翼,就可能降低采辦和維護成本。類(lèi)似地,如果任務(wù)所需航程短,單一子模塊20可能就足以完成任務(wù)了,不必與母模塊30對接并由其運輸。因此,本文公開(kāi)的模塊化方法為實(shí)現分布式空中存在提高了很大的靈活性。 The detailed description and the drawings or figures are supportive and descriptive of the disclosure, but the inventive scope is defined solely by the claims. While some of the best modes and other embodiments for carrying out the disclosure have been described in detail herein, various alternative designs and embodiments exist within the intended scope of this disclosure. Furthermore, the embodiments shown in the drawings or the characteristics of various embodiments mentioned in the present description are not necessarily to be understood as embodiments independent of each other. Rather, it is possible that each of the characteristics described in one of the examples of an embodiment can be combined with one or a plurality of other desired characteristics from other embodiments, resulting in other embodiments not described in words or by reference to the drawings. Accordingly, such other embodiments fall within the framework of the scope of the appended claims. 本公開(kāi)內容的詳細描述和附圖或圖表是輔助和描述性的,本發(fā)明的范圍僅由權利要求定義。盡管本文詳細地描述了實(shí)施本公開(kāi)內容的一些最佳方式和其它實(shí)施例,在本公開(kāi)的保護范圍內仍有各種其它設計和實(shí)施方式。此外,附圖所示實(shí)施方式或本描述中提到各種實(shí)施方式的特征不必理解為相互獨立的實(shí)施例。相反,某個(gè)實(shí)施方式的某個(gè)示例描述的每個(gè)特征,都可能與其它一個(gè)或多個(gè)實(shí)施方式期望的特征組合,因此沒(méi)有用文字或引用附圖的方式描述其它實(shí)施方式。因此,這類(lèi)其它實(shí)施方式也屬于所附權利要求的框架范圍內。 What is claimed is: 本專(zhuān)利的權利要求是: 1. A modular unmanned aerial system (UAS) having a first and a second flight configuration, the modular UAS comprising: an unmanned aerial vehicle (UAV) parent module comprising: a forward wing disposed on a fuselage with a first and a second distal end, a first docking mechanism disposed on the first distal end and a second docking mechanism disposed on the second distal end, a secondary wing disposed on the fuselage aft of the forward wing, and a parent flight propulsion system; a first and second UAV child module each having a child flight propulsion system and a child docking mechanism, wherein the docking mechanism of the first UAV child module is configured to connect to the first docking mechanism of the UAV parent module, and the docking mechanism of the second UAV child module is configured to connect to the second docking mechanism of the UAV parent module, wherein the UAV child modules form an integral part of the forward wing and extend the wingspan of the forward wing; and wherein the first flight configuration comprises connecting the UAV child modules to the UAV parent module, wherein the second flight configuration comprises separating the UAV child modules from the UAV parent module during aerial flight and the UAV child modules achieving flight independently of the UAV parent module, and wherein the UAS is capable of returning to the first flight configuration from the second flight configuration during aerial flight. 1. 一種具有第一和第二構型的模塊化無(wú)人空中系統,該模塊化無(wú)人空中系統包括: 一個(gè)無(wú)人機母模塊,該模塊包括: 一個(gè)具有第一和第二遠端、安裝在機身上的前翼, 一個(gè)安裝在第一遠端的第一對接機構和一個(gè)安裝在第二遠端的第二對接機構, 一個(gè)安裝在機身上、前翼后方的第二機翼,和 一個(gè)母飛行推進(jìn)系統; 一個(gè)各自配有子飛行推進(jìn)系統和子對接機構的第一和第二無(wú)人機子模塊,其中這樣構型第一無(wú)人機子模塊的對接機構可與無(wú)人機母模塊的第一對接機構連接,這樣構型第二無(wú)人機子模塊的對接機構可與無(wú)人機母模塊的第二對接機構連接,其中該無(wú)人機子模塊是前翼的組成部分并延長(cháng)前翼的翼展; 其中第一飛行構型包括將無(wú)人機子模塊連接到無(wú)人機母模塊上,其中第二飛行構型包括在飛行中將無(wú)人機子模塊與無(wú)人機母模塊分離,該無(wú)人機子模塊獨立于無(wú)人機母模塊飛行,其中無(wú)人空中系統在空中飛行期間就能夠從第二飛行構型返回第一飛行構型。 2. The modular UAS of claim 1, further comprising: a third and fourth UAV child module each having a child flight propulsion system and a child docking mechanism, wherein the docking mechanism of the third UAV child module is configured to connect to the docking mechanism of the first UAV child module, and the docking mechanism of the fourth UAV child module is configured to connect to the docking mechanism of the second UAV child module. 2. 權利要求1中的模塊化無(wú)人空中系統還包括: 一種各自配有子飛行推進(jìn)系統和子對接機構的第三和第四無(wú)人機子模塊,其中這樣構型第三無(wú)人機子模塊的對接機構可與第一無(wú)人機子模塊的對接機構連接,這樣構型第四無(wú)人機子模塊的對接機構可與第二無(wú)人機子模塊的對接機構連接。 3. The modular UAS of claim 2, wherein the propulsion devices include propellers. 3. 權利要求2中的模塊化無(wú)人空中系統,其中的推進(jìn)裝置包括螺旋槳。 4. The modular UAS of claim 1, further comprising a fuel tank positioned within or connected to the fuselage, and powered using chemical energy from a supply of fuel in the fuel tank. 4. 權利要求1中的模塊化無(wú)人空中系統,有一個(gè)位于機身內或安裝到機身上的油箱,其動(dòng)力來(lái)自于油箱中燃油產(chǎn)生的化學(xué)能。 5. The modular UAS of claim 1, further comprising a main battery positioned within or connected to the fuselage, wherein the propulsion devices are powered using electrical energy from the main battery. 5. 權利要求1中的模塊化無(wú)人空中系統,有一個(gè)位于機身內或安裝到機身上的主電池組,其推進(jìn)裝置的動(dòng)力來(lái)自于該主電池組提供的電能。 6. The modular UAS of claim 1, wherein the propulsion devices further each include a pair of ducted rotors. 6. 權利要求1中的模塊化無(wú)人空中系統,其每個(gè)推進(jìn)裝置還包括一對涵道式轉子。 7. The modular UAS of claim 1, wherein each of the UAV child modules includes a corresponding energy storage system, and wherein the propulsion devices of each UAV child module is powered using energy from the corresponding energy storage system. 7. 權利要求1中的模塊化無(wú)人空中系統,其中每個(gè)無(wú)人機子模塊都包括相應的能量存儲系統,并且其中每個(gè)無(wú)人機子模塊的推進(jìn)裝置都由來(lái)自相應能量存儲系統的能量驅動(dòng)。 8. The modular UAS of claim 1, wherein the energy is electrical energy. 8. 權利要求1中的模塊化無(wú)人空中系統,其能量是電能。 9. The modular UAS of claim 1, further comprising: 9. 權利要求1中的模塊化無(wú)人空中系統還包括: a plurality of radio frequency (RF) transceivers connected to the UAV parent module and each of the UAV child modules, wherein the UAV parent module and the UAV child modules are configured to remotely communicate with each other using the RF transceivers during at least the second flight configuration. 安裝到無(wú)人機母模塊和每個(gè)無(wú)人機子模塊上的多個(gè)射頻收發(fā)器,其中這樣構型的無(wú)人機母模塊和無(wú)人機子模塊至少在以第二飛行構型運行期間,可使用該射頻收發(fā)器在相互之間進(jìn)行遠程通信。 10. The modular UAS of claim 1, wherein each of the docking mechanisms includes a probe and a receptacle configured to engage with a corresponding receptacle and probe of an adjacent one of the UAV child modules or the UAV parent module. 10. 權利要求1中的模塊化無(wú)人空中系統,其中每個(gè)對接機構的構型都包括一個(gè)插棒和一個(gè)插孔,可與相鄰無(wú)人機子模塊或無(wú)人機母模塊的一個(gè)對應插孔和插棒嚙合。 11. The modular UAS of claim 1, wherein the docking mechanisms include a set of magnets. 11. 權利要求1中的模塊化無(wú)人空中系統,其對接機構包括一套磁體。 12. The modular UAS of claim 1, wherein the docking mechanisms include an actuator device configured to selectively couple with and engage an adjacent one of the UAV child modules or the UAV parent module. 12. 權利要求1中的模塊化無(wú)人空中系統,其這樣構型對接機構包括一個(gè)作動(dòng)裝置,可選擇與一個(gè)相鄰無(wú)人機子模塊或無(wú)人機母模塊耦合并嚙合。 13. A method of operating a modular unmanned aerial system (UAS) having a first and a second flight configuration during aerial flight, comprising: 13. 操縱一個(gè)在空中飛行時(shí)具有第一和第二構型的模塊化無(wú)人空中系統的方法包括: providing a modular UAS comprising: an unmanned aerial vehicle (UAV) parent module comprising: a forward wing disposed on a fuselage with a first and a second distal end, a first docking mechanism disposed on the first distal end and a second docking mechanism disposed on the second distal end, a secondary wing disposed on the fuselage aft of the forward wing, and a parent flight propulsion system; 提供一個(gè)模塊化無(wú)人空中系統,該系統包括: 一個(gè)無(wú)人機母模塊,該模塊包括: 一個(gè)具有第一和第二遠端、安裝在機身上的前翼, 一個(gè)安裝在第一遠端的第一對接機構和一個(gè)安裝在第二遠端的第二對接機構, 一個(gè)安裝在機身上、前翼后方的第二機翼,和 一個(gè)母飛行推進(jìn)系統; providing a first and second UAV child module each having a child flight propulsion system and a child docking mechanism, wherein the docking mechanism of the first UAV child module is configured to connect to the first docking mechanism of the UAV parent module, and the docking mechanism of the second UAV child module is configured to connect to the second docking mechanism of the UAV parent module, wherein the UAV child modules form an integral part of the forward wing and extend the wingspan of the forward wing; 提供第一和第二子模塊,每個(gè)字模塊具有一個(gè)子飛行推進(jìn)系統和一個(gè)子對接機構,其中這樣構型第一無(wú)人機子模塊的對接機構與無(wú)人機母模塊的第一對接機構連接,這樣構型第二無(wú)人機子模塊的對接機構與無(wú)人機母模塊的第二對接機構連接,其中無(wú)人機子模塊前翼的組成部分并延長(cháng)該前翼的翼展; forming the first flight configuration by connecting the UAV child modules to the UAV parent module; 形成第一飛行構型,具體方法是將無(wú)人機子模塊連接到無(wú)人機母模塊上; forming the second flight configuration by separating the UAV child modules from the UAV parent module during aerial flight, wherein the UAV child modules achieve flight independent of the UAV parent module; 形成第二飛行構型,具體方法是在空中飛行期間將無(wú)人機子模塊與無(wú)人機母模塊分離,其中無(wú)人機子模塊可獨立于無(wú)人機母模塊飛行; returning to the first flight configuration from the second flight configuration during aerial flight. 在飛行中將第二飛行構型還原成第一飛行構型。 14. The method of claim 13, wherein forming the second flight configuration includes delivering one or more payloads to a corresponding destination using at least one of the UAV child modules. 14. 權利要求13中的方法,其中形成第二飛行構型包括使用至少一個(gè)無(wú)人機子模塊、配送一個(gè)或多個(gè)有效載荷到相應目的地。 15. The method of claim 13, wherein the modular UAS further comprises: a third and fourth UAV child module each having a child flight propulsion system and a child docking mechanism, wherein the docking mechanism of the third UAV child module is configured to connect to the docking mechanism of the first UAV child module, and the docking mechanism of the fourth UAV child module is configured to connect to the docking mechanism of the second UAV child module. 15. 權利要求13中的方法,其中模塊化無(wú)人空中系統還包括:各自具有一個(gè)子飛行推進(jìn)系統和子對接機構的第三和第四無(wú)人機子模塊,其中這樣構型第三無(wú)人機子模塊的對接機構與第一無(wú)人機子模塊的對接機構連接,這樣構型第四無(wú)人機子模塊的對接機構與第二無(wú)人機子模塊的對接機構連接。 16. The method of claim 15, wherein the UAV parent module and the UAV child modules each include a corresponding radio frequency (RF) transceiver, the method further comprising: communicating with each of the UAV child modules, via the UAV parent module using the RF transceivers, while in the second flight configuration. 16. 權利要求15中的方法,其中無(wú)人機母模塊和無(wú)人機子模塊各自包括一臺相應的射頻收發(fā)器,該方法還包括:處于第二飛行構型時(shí),使用射頻收發(fā)器通過(guò)無(wú)人機母模塊與每個(gè)無(wú)人機子模塊通信。 17. The method of claim 16, wherein docking the first and second distal ends of the UAV parent module to the plurality of UAV child modules includes magnetically aligning the UAV parent module with an adjacent UAV child module using a plurality of magnets. 17. 權利要求16中的方法,其中無(wú)人機母模塊的第一和第二遠端與多個(gè)無(wú)人機子模塊的對接,包括使用多套磁體利用磁力將無(wú)人機母模塊與相鄰無(wú)人機子模塊對齊。 18. A modular unmanned aerial system (UAS) having a first and a second flight configuration, the modular UAS comprising: 18. 一個(gè)具有第一和第二飛行構型的模塊化無(wú)人空中系統,該模塊化無(wú)人空中系統包括: an unmanned aerial vehicle (UAV) parent module comprising: a forward wing disposed on a fuselage with a first and a second distal end, a plurality of docking mechanisms disposed on the first and second distal ends, a secondary wing disposed on the fuselage aft of the forward wing, and a parent flight propulsion system; 一個(gè)無(wú)人機母模塊,該模塊包括: 一個(gè)具有第一和第二遠端、安裝在機身上的前翼, 一個(gè)安裝在第一和第二遠端的多個(gè)對接機構, 一個(gè)安裝在機身上、前翼后方的第二機翼,和 一個(gè)母飛行推進(jìn)系統; a plurality of UAV child modules each having a child flight propulsion system and a child docking mechanism, wherein the docking mechanisms of the plurality of UAV child modules are configured to connect to the plurality of docking mechanisms of the UAV parent module, wherein the UAV child modules form an integral part of the forward wing and extend the wingspan of the forward wing; and wherein the first flight configuration comprises connecting the UAV child modules to the UAV parent module, wherein the second flight configuration comprises separating the UAV child modules from the UAV parent module during aerial flight and the UAV child modules achieving flight independently of the UAV parent module, and wherein the UAS is capable of returning to the first flight configuration from the second flight configuration during aerial flight. 各自配有子飛行推進(jìn)系統和子對接機構的多個(gè)無(wú)人機子模塊,其中這樣構型多個(gè)無(wú)人機子模塊的對接機構可與無(wú)人機母模塊的多個(gè)對接機構連接,其中該無(wú)人機子模塊是前翼的組成部分并延長(cháng)前翼的翼展; 其中第一飛行構型包括將無(wú)人機子模塊連接到無(wú)人機母模塊上,其中第二飛行構型包括在飛行中與將無(wú)人機子模塊與無(wú)人機母模塊分離,該無(wú)人機子模塊獨立于無(wú)人機母模塊飛行,其中無(wú)人空中系統在空中飛行期間就能夠從第二飛行構型返回第一飛行構型。 19. The modular UAS of claim 18, further comprising a main battery positioned within or connected to the fuselage, wherein the propulsion devices are powered using electrical energy from the main battery. 19. 權利要求18中的模塊化無(wú)人空中系統還包括安裝在機身內或機身上的主電池組,其推進(jìn)裝置使用該主電池組的電能驅動(dòng)。 20. The modular UAS of claim 19, further comprising: a plurality of radio frequency (RF) transceivers connected to the UAV parent module and each of the UAV child modules, wherein the UAV parent module and the UAV child modules are configured to remotely communicate with each other using the RF transceivers during at least the second flight configuration. 20. 權利要求19中的模塊化無(wú)人空中系統還包括:安裝在無(wú)人機母模塊和每個(gè)無(wú)人機子模塊上的多個(gè)射頻收發(fā)器,其中這樣構型的無(wú)人機母模塊和無(wú)人機子模塊至少在以第二飛行構型運行期間,可使用該射頻收發(fā)器在相互之間進(jìn)行遠程通信。 |
微信聯(lián)系我們
關(guān)于我們
微信聯(lián)系我們
|
我們的服務(wù)優(yōu)勢
資質(zhì)正規 經(jīng)驗豐富 語(yǔ)種齊全 價(jià)格實(shí)惠 交易安全